next up previous contents FITSIO Home
次へ: 基本的なインターフェース ルーチン 上へ: Optimizing Code for Maximum 戻る: Optimizing Code for Maximum   目次

Background Information: How CFITSIO Manages Data I/O

Many CFITSIO operations involve transferring only a small number of bytes to or from the FITS file (e.g, reading a keyword, or writing a row in a table); it would be very inefficient to physically read or write such small blocks of data directly in the FITS file on disk, therefore CFITSIO maintains a set of internal Input-Output (IO) buffers in RAM memory that each contain one FITS block (2880 bytes) of data. Whenever CFITSIO needs to access data in the FITS file, it first transfers the FITS block containing those bytes into one of the IO buffers in memory. The next time CFITSIO needs to access bytes in the same block it can then go to the fast IO buffer rather than using a much slower system disk access routine. The number of available IO buffers is determined by the NIOBUF parameter (in fitsio2.h) and is currently set to 40.

Whenever CFITSIO reads or writes data it first checks to see if that block of the FITS file is already loaded into one of the IO buffers. If not, and if there is an empty IO buffer available, then it will load that block into the IO buffer (when reading a FITS file) or will initialize a new block (when writing to a FITS file). If all the IO buffers are already full, it must decide which one to reuse (generally the one that has been accessed least recently), and flush the contents back to disk if it has been modified before loading the new block.

The one major exception to the above process occurs whenever a large contiguous set of bytes are accessed, as might occur when reading or writing a FITS image. In this case CFITSIO bypasses the internal IO buffers and simply reads or writes the desired bytes directly in the disk file with a single call to a low-level file read or write routine. The minimum threshold for the number of bytes to read or write this way is set by the MINDIRECT parameter and is currently set to 3 FITS blocks = 8640 bytes. This is the most efficient way to read or write large chunks of data and can achieve IO transfer rates of 5 - 10MB/s or greater. Note that this fast direct IO process is not applicable when accessing columns of data in a FITS table because the bytes are generally not contiguous since they are interleaved by the other columns of data in the table. This explains why the speed for accessing FITS tables is generally slower than accessing FITS images.

Given this background information, the general strategy for efficiently accessing FITS files should now be apparent: when dealing with FITS images, read or write large chunks of data at a time so that the direct IO mechanism will be invoked; when accessing FITS headers or FITS tables, on the other hand, once a particular FITS block has been loading into one of the IO buffers, try to access all the needed information in that block before it gets flushed out of the IO buffer. It is important to avoid the situation where the same FITS block is being read then flushed from a IO buffer multiple times.

The following section gives more specific suggestions for optimizing the use of CFITSIO.

1. When dealing with a FITS primary array or IMAGE extension, it is more efficient to read or write large chunks of the image at a time (at least 3 FITS blocks = 8640 bytes) so that the direct IO mechanism will be used as described in the previous section. Smaller chunks of data are read or written via the IO buffers, which is somewhat less efficient because of the extra copy operation and additional bookkeeping steps that are required. In principle it is more efficient to read or write as big an array of image pixels at one time as possible, however, if the array becomes so large that the operating system cannot store it all in RAM, then the performance may be degraded because of the increased swapping of virtual memory to disk.

2. When dealing with FITS tables, the most important efficiency factor in the software design is to read or write the data in the FITS file in a single pass through the file. An example of poor program design would be to read a large, 3-column table by sequentially reading the entire first column, then going back to read the 2nd column, and finally the 3rd column; this obviously requires 3 passes through the file which could triple the execution time of an I/O limited program. For small tables this is not important, but when reading multi-megabyte sized tables these inefficiencies can become significant. The more efficient procedure in this case is to read or write only as many rows of the table as will fit into the available internal I/O buffers, then access all the necessary columns of data within that range of rows. Then after the program is completely finished with the data in those rows it can move on to the next range of rows that will fit in the buffers, continuing in this way until the entire file has been processed. By using this procedure of accessing all the columns of a table in parallel rather than sequentially, each block of the FITS file will only be read or written once.

The optimal number of rows to read or write at one time in a given table depends on the width of the table row, on the number of I/O buffers that have been allocated in FITSIO, and also on the number of other FITS files that are open at the same time (since one I/O buffer is always reserved for each open FITS file). Fortunately, a FITSIO routine is available that will return the optimal number of rows for a given table: call ftgrsz(unit, nrows, status). It is not critical to use exactly the value of nrows returned by this routine, as long as one does not exceed it. Using a very small value however can also lead to poor performance because of the overhead from the larger number of subroutine calls.

The optimal number of rows returned by ftgrsz is valid only as long as the application program is only reading or writing data in the specified table. Any other calls to access data in the table header would cause additional blocks of data to be loaded into the I/O buffers displacing data from the original table, and should be avoided during the critical period while the table is being read or written.

3. Use binary table extensions rather than ASCII table extensions for better efficiency when dealing with tabular data. The I/O to ASCII tables is slower because of the overhead in formatting or parsing the ASCII data fields, and because ASCII tables are about twice as large as binary tables with the same information content.

4. Design software so that it reads the FITS header keywords in the same order in which they occur in the file. When reading keywords, FITSIO searches forward starting from the position of the last keyword that was read. If it reaches the end of the header without finding the keyword, it then goes back to the start of the header and continues the search down to the position where it started. In practice, as long as the entire FITS header can fit at one time in the available internal I/O buffers, then the header keyword access will be very fast and it makes little difference which order they are accessed.

5. Avoid the use of scaling (by using the BSCALE and BZERO or TSCAL and TZERO keywords) in FITS files since the scaling operations add to the processing time needed to read or write the data. In some cases it may be more efficient to temporarily turn off the scaling (using ftpscl or fttscl) and then read or write the raw unscaled values in the FITS file.

6. Avoid using the 'implicit datatype conversion' capability in FITSIO. For instance, when reading a FITS image with BITPIX = -32 (32-bit floating point pixels), read the data into a single precision floating point data array in the program. Forcing FITSIO to convert the data to a different datatype can significantly slow the program.

7. Where feasible, design FITS binary tables using vector column elements so that the data are written as a contiguous set of bytes, rather than as single elements in multiple rows. For example, it is faster to access the data in a table that contains a single row and 2 columns with TFORM keywords equal to '10000E' and '10000J', than it is to access the same amount of data in a table with 10000 rows which has columns with the TFORM keywords equal to '1E' and '1J'. In the former case the 10000 floating point values in the first column are all written in a contiguous block of the file which can be read or written quickly, whereas in the second case each floating point value in the first column is interleaved with the integer value in the second column of the same row so CFITSIO has to explicitly move to the position of each element to be read or written.

8. Avoid the use of variable length vector columns in binary tables, since any reading or writing of these data requires that CFITSIO first look up or compute the starting address of each row of data in the heap. In practice, this is probably not a significant efficiency issue.

9. When copying data from one FITS table to another, it is faster to transfer the raw bytes instead of reading then writing each column of the table. The FITSIO subroutines FTGTBS and FTPTBS (for ASCII tables), and FTGTBB and FTPTBB (for binary tables) will perform low-level reads or writes of any contiguous range of bytes in a table extension. These routines can be used to read or write a whole row (or multiple rows) of a table with a single subroutine call. These routines are fast because they bypass all the usual data scaling, error checking and machine dependent data conversion that is normally done by FITSIO, and they allow the program to write the data to the output file in exactly the same byte order. For these same reasons, use of these routines can be somewhat risky because no validation or machine dependent conversion is performed by these routines. In general these routines are only recommended for optimizing critical pieces of code and should only be used by programmers who thoroughly understand the internal byte structure of the FITS tables they are reading or writing.

10. Another strategy for improving the speed of writing a FITS table, similar to the previous one, is to directly construct the entire byte stream for a whole table row (or multiple rows) within the application program and then write it to the FITS file with ftptbb. This avoids all the overhead normally present in the column-oriented CFITSIO write routines. This technique should only be used for critical applications, because it makes the code more difficult to understand and maintain, and it makes the code more system dependent (e.g., do the bytes need to be swapped before writing to the FITS file?).

11. Finally, external factors such as the type of magnetic disk controller (SCSI or IDE), the size of the disk cache, the average seek speed of the disk, the amount of disk fragmentation, and the amount of RAM available on the system can all have a significant impact on overall I/O efficiency. For critical applications, a system administrator should review the proposed system hardware to identify any potential I/O bottlenecks.


next up previous contents FITSIO Home
次へ: 基本的なインターフェース ルーチン 上へ: Optimizing Code for Maximum 戻る: Optimizing Code for Maximum   目次
HAMABE Masaru 平成22年9月17日